Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: covidwho-2286113

RESUMEN

Heat shock protein family A (HSP70) member 5 (HSPA5) is aberrantly expressed in various tumors and closely associated with the progression and prognosis of cancer. Nevertheless, its role in bladder cancer (BCa) remains elusive. The results of our study demonstrated that HSPA5 was upregulated in BCa and correlated with patient prognosis. Cell lines with low expression level of HSPA5 were constructed to explore the role of this protein in BCa. HSPA5 knockdown promoted apoptosis and retarded the proliferation, migration and invasion of BCa cells by regulating the VEGFA/VEGFR2 signaling pathway. In addition, overexpression of VEGFA alleviated the negative effect of HSPA5 downregulation. Moreover, we found that HSPA5 could inhibit the process of ferroptosis through the P53/SLC7A11/GPX4 pathway. Hence, HSPA5 can facilitate the progression of BCa and may be used as a novel biomarker and latent therapeutic target in the clinic.


Asunto(s)
Ferroptosis , Neoplasias de la Vejiga Urinaria , Humanos , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Ferroptosis/genética , Neoplasias de la Vejiga Urinaria/metabolismo
2.
Clin Exp Immunol ; 212(3): 262-275, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2257030

RESUMEN

T cells play key protective but also pathogenic roles in COVID-19. We studied the expression of long non-coding RNAs (lncRNAs) in COVID-19 T-cell transcriptomes by integrating previously published single-cell RNA sequencing datasets. The long intergenic non-coding RNA MALAT1 was the most highly transcribed lncRNA in T cells, with Th1 cells demonstrating the lowest and CD8+ resident memory cells the highest MALAT1 expression, amongst CD4+ and CD8+ T-cells populations, respectively. We then identified gene signatures that covaried with MALAT1 in single T cells. A significantly higher number of transcripts correlated negatively with MALAT1 than those that correlated. Enriched functional annotations of the MALAT1- anti-correlating gene signature included processes associated with T-cell activation such as cell division, oxidative phosphorylation, and response to cytokine. The MALAT1 anti-correlating gene signature shared by both CD4+ and CD8+ T-cells marked dividing T cells in both the lung and blood of COVID-19 patients. Focussing on the tissue, we used an independent patient cohort of post-mortem COVID-19 lung samples and demonstrated that MALAT1 suppression was indeed a marker of MKI67+ proliferating CD8+ T cells. Our results reveal MALAT1 suppression and its associated gene signature are a hallmark of human proliferating T cells.


Asunto(s)
COVID-19 , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación hacia Abajo , Proliferación Celular/genética , COVID-19/genética , Linfocitos T CD8-positivos/metabolismo
3.
Nucleic Acids Res ; 49(21): 12502-12516, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1546005

RESUMEN

Circular RNAs (circRNAs) are noncoding RNAs that exist in all eukaryotes investigated and are derived from back-splicing of certain pre-mRNA exons. Here, we report the application of artificial circRNAs designed to act as antisense-RNAs. We systematically tested a series of antisense-circRNAs targeted to the SARS-CoV-2 genome RNA, in particular its structurally conserved 5'-untranslated region. Functional assays with both reporter transfections as well as with SARS-CoV-2 infections revealed that specific segments of the SARS-CoV-2 5'-untranslated region can be efficiently accessed by specific antisense-circRNAs, resulting in up to 90% reduction of virus proliferation in cell culture, and with a durability of at least 48 h. Presenting the antisense sequence within a circRNA clearly proved more efficient than in the corresponding linear configuration and is superior to modified antisense oligonucleotides. The activity of the antisense-circRNA is surprisingly robust towards point mutations in the target sequence. This strategy opens up novel applications for designer circRNAs and promising therapeutic strategies in molecular medicine.


Asunto(s)
Genoma Viral/genética , ARN sin Sentido/genética , ARN Circular/genética , ARN Viral/genética , SARS-CoV-2/genética , Replicación Viral/genética , Regiones no Traducidas 5'/genética , Animales , Antivirales/metabolismo , Secuencia de Bases , COVID-19/prevención & control , COVID-19/virología , Proliferación Celular/genética , Chlorocebus aethiops , Diseño de Fármacos , Células HeLa , Interacciones Huésped-Patógeno/genética , Humanos , Conformación de Ácido Nucleico , ARN Viral/química , RNA-Seq/métodos , SARS-CoV-2/fisiología , Células Vero
4.
Sci Adv ; 6(48)2020 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1388431

RESUMEN

Acute respiratory distress syndrome is associated with a robust inflammatory response that damages the vascular endothelium, impairing gas exchange. While restoration of microcapillaries is critical to avoid mortality, therapeutic targeting of this process requires a greater understanding of endothelial repair mechanisms. Here, we demonstrate that lung endothelium possesses substantial regenerative capacity and lineage tracing reveals that native endothelium is the source of vascular repair after influenza injury. Ablation of chicken ovalbumin upstream promoter-transcription factor 2 (COUP-TF2) (Nr2f2), a transcription factor implicated in developmental angiogenesis, reduced endothelial proliferation, exacerbating viral lung injury in vivo. In vitro, COUP-TF2 regulates proliferation and migration through activation of cyclin D1 and neuropilin 1. Upon influenza injury, nuclear factor κB suppresses COUP-TF2, but surviving endothelial cells ultimately reestablish vascular homeostasis dependent on restoration of COUP-TF2. Therefore, stabilization of COUP-TF2 may represent a therapeutic strategy to enhance recovery from pathogens, including H1N1 influenza and SARS-CoV-2.


Asunto(s)
Factor de Transcripción COUP II/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Subtipo H1N1 del Virus de la Influenza A , Pulmón/citología , Pulmón/fisiología , Infecciones por Orthomyxoviridae/metabolismo , Regeneración/genética , Animales , Factor de Transcripción COUP II/genética , Movimiento Celular/genética , Proliferación Celular/genética , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Infecciones por Orthomyxoviridae/virología , Transfección
5.
Arch Virol ; 165(2): 345-354, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-824852

RESUMEN

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a typical neurotropic coronavirus that mainly invades the central nervous system (CNS) in piglets and causes vomiting and wasting disease. Emerging evidence suggests that PHEV alters microRNA (miRNA) expression profiles, and miRNA has also been postulated to be involved in its pathogenesis, but the mechanisms underlying this process have not been fully explored. In this study, we found that PHEV infection upregulates miR-142a-3p RNA expression in N2a cells and in the CNS of mice. Downregulation of miR-142a-3p by an miRNA inhibitor led to a significant repression of viral proliferation, implying that it acts as a positive regulator of PHEV proliferation. Using a dual-luciferase reporter assay, miR-142a-3p was found to bind directly bound to the 3' untranslated region (3'UTR) of Rab3a mRNA and downregulate its expression. Knockdown of Rab3a expression by transfection with an miR-142a-3p mimic or Rab3a siRNA significantly increased PHEV replication in N2a cells. Conversely, the use of an miR-142a-3p inhibitor or overexpression of Rab3a resulted in a marked restriction of viral production at both the mRNA and protein level. Our data demonstrate that miR-142a-3p promotes PHEV proliferation by directly targeting Rab3a mRNA, and this provides new insights into the mechanisms of PHEV-related pathogenesis and virus-host interactions.


Asunto(s)
Betacoronavirus 1/genética , Proliferación Celular/genética , Infecciones por Coronavirus/genética , MicroARNs/genética , Porcinos/virología , Proteína de Unión al GTP rab3A/genética , Regiones no Traducidas 3'/genética , Animales , Línea Celular , Línea Celular Tumoral , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Regulación hacia Abajo/genética , Células HEK293 , Humanos , Ratones , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA